Approved Aircraft Inspection Program Sample
Used to develop and obtain approval of an Approved Aircraft Inspection Program (AAIP). AAIP, when formally approved by the Federal Aviation Administration (FAA). The AAIP applies to aircraft type certificated (TC) for nine or less passenger seats that are authorized for operations under part 135. In order to provide a reasonable assurance that aircraft are functioning properly, the FAA requires a series of aircraft inspections; somewhat similar to the many currency requirements for airman. This report outlines the basic inspection requirements for aircraft. Inspection requirements differ with the various uses of aircraft. INSPECTION PROGRAM Initiated by: AFS-34 o chpoge’: 1 0. This advisory circular (AC) provides information and guidance that can be used to develop an approved aircraft inspection program (AAIP). AC 135-10, Approved Aircraft.
Aircraft maintenance checks are periodic inspections that have to be done on all commercial and civil aircraft after a certain amount of time or usage; military aircraft normally follow specific maintenance programmes which may or may not be similar to those of commercial and civil operators.[citation needed]
- 1Commercial aviation
- 1.2ABC check system
Commercial aviation[edit]
Airlines and other commercial operators of large or turbine-powered aircraft follow a continuous inspection program approved by the Federal Aviation Administration (FAA) in the United States,[1] or by other airworthiness authorities such as the Transport Canada Civil Aviation Directorate (TCCA) or the European Aviation Safety Agency (EASA). Each operator prepares a Continuous Airworthiness Maintenance Program (CAMP) under its Operations Specifications or 'OpSpecs'.[2]The CAMP includes both routine and detailed inspections.
FAA Maintenance Review Board[edit]
In the United States the FAA directs that initial aircraft maintenance requirements be generated for each aircraft type in a Maintenance Review Board Report (MRBR)[3] based on the analysis performed as outlined in ATA 'MSG-3 Operator/ManufacturerScheduled Maintenance Development' document (MSG-3 is for Maintenance Steering Group – 3rd Task Force). A history of this form of guidance can be found in Chapter 2 of the mentioned above AC 121-22C[3]. The MRBR is an approved set of an aircraft initial maintenance requirements as prescribed by the Appendix H to para. 25.1529 of the 14 CFR part 25. Modern aircraft with MSG-3-derived maintenance programs employ usage parameters (such as flight hours, calendar time, or flight cycles) for each required maintenance task included in the MRBR, which allow for more flexible scheduling of maintenance tasks accomplishment to minimize aircraft downtime.
ABC check system[edit]
Airlines and airworthiness authorities casually refer to the detailed inspections as 'checks', commonly one of the following: A check, B check, C check, or D check. A and B checks are lighter checks, while C and D are considered heavier checks. Aircraft operators may perform some work at their own facilities but often checks, and especially the heavier checks, take place at maintenance, repair and overhaul (MRO) company sites.[4]
A check[edit]
This is performed approximately every 400-600 flight hours or 200–300 flights, depending on aircraft type.[5] It needs about 50-70 man-hours and usually performs in a hangar for a minimum of 10 hours. The actual occurrence of this check varies by aircraft type, the cycle count, or the number of hours flown since the last check. The occurrence can be delayed by the airline if certain predetermined conditions are met.
B check[edit]
This is performed approximately every 6-8 months. It needs about 160-180 man-hours, depending on the aircraft, and is usually completed within 1–3 days at an airport hangar. A similar occurrence schedule applies to the B check as to the A check. However, B checks are increasingly incorporated into successive A checks, i.e.: Checks A-1 through A-10 complete all the B check items.[6]
C check[edit]
This is performed approximately every 20–24 months or a specific number of actual flight hours (FH) or as defined by the manufacturer. This maintenance check is much more extensive than a B check, requiring a large majority of the aircraft's components to be inspected. This check puts the aircraft out of service, and the aircraft must not leave the maintenance site until it is completed. It also requires more space than A and B checks. It is, therefore, usually carried out in a hangar at a maintenance base. The time needed to complete such a check is at least 1–2 weeks and the effort involved can require up to 6,000 man-hours.
3C check[edit]
Some authorities use a type of check, known as a 3C check or Intermediate Layover (IL), which typically includes light structural maintenance, including checks for corrosion, or on specific high-load parts of the airframe.[7] It may also be used as the opportunity for cabin upgrades (for example, new seats, entertainment systems, carpeting) which would otherwise put the aircraft out of service for a significant time without the need for an inspection. As component reliability has improved, some MROs now spread the workload across several C checks, or incorporate this 3C check into D checks instead.[8]
D check[edit]
The D check, sometimes known as a 'heavy maintenance visit' (HMV)[9] is by far the most comprehensive and demanding check for an airplane. This check occurs approximately every 6-10 years.[8] It is a check that more or less takes the entire airplane apart for inspection and overhaul. Even the paint may need to be completely removed for further inspection on the fuselage metal skin. Such a check can generally take up to 50,000 man-hours and 2 months to complete, depending on the aircraft and the number of technicians involved.[10] It also requires the most space of all maintenance checks, and as such must be performed at a suitable maintenance base. The requirements and the tremendous effort involved in this maintenance check make it by far the most expensive, with total costs for a single D check in the million-dollar range.[11]
Because of the nature and the cost of such a check, most airlines — especially those with a large fleet — have to plan D checks for their aircraft years in advance. Often, older aircraft being phased out of a particular airline's fleet are either stored or scrapped upon reaching their next D check, due to the high costs involved in comparison to the aircraft's value.[12] On average, a commercial aircraft undergoes two or three D checks before being retired.[13]
Manufacturers often underestimate the cost of the HMV/D-check: for a B777-200ER, Boeing estimates a $2.5 million cost but it can surpass $4 million, on a B777-300ER, the anticipated $2.7 million can rise to $4.5 million, from $4 million to $6 million for a B747-400 and from $650,000 to more than $1 million for a B737-800, while the $1.5 million projection for the B787-9 is likely to be surpassed.[14]
Comparison[edit]
Model | A Check | C Check | D Check |
---|---|---|---|
Airbus A220[16] | 850 | 8,500 | |
Airbus A320 family[17] | 750 (or 750 cycles or 4 months) | 7,500 (or 5,000 cycles or 24 months) | 6/12 years |
ATR 42/ATR 72[18] | 750 | 5,000 | 2/4/8 Years |
Bombardier CRJ700 series[19] | 800 | 8,000 | |
Bombardier Dash 8[20] | 800 | 8,000 | |
Bombardier Global 7500[21] | 850/36 months | 8,500 cycles / 12 years | |
Embraer E-Jet family | 850 | 8,500 | |
Embraer E-Jet E2 family | 1,000 | 10,000 | |
Mitsubishi Regional Jet | 750 | 7,500 | |
Boeing 737 NG[22] | 150/600 | 7,500 (or 730 days) | |
Boeing 747-400/747-8[23] | 600/1,000 | 7,500/10,000 | 8-8-6 years/6 years |
References[edit]
- ^AFS-600 (2008). 'Chapter 8. Inspection Fundamentals'. Aviation Maintenance Technician Handbook(pdf). Federal Aviation Administration. pp. 8–15. FAA-H-8083-30. Archived from the original(PDF) on 2014-11-22. Retrieved 2014-12-01.
- ^AFS (2009). 'Vol. 3 Chapters 18 & 43'. Flight Standards Information Management System. CHG 80. Federal Aviation Administration. Order 8900.1. Retrieved 2010-01-12.
- ^ abMaintenance Review Boards, Maintenance Type Boards, and OEM/TCH Recommended Maintenance Procedures(pdf). Federal Aviation Administration. 2012. Advisory Circular 121-22C. Retrieved 2019-05-16.
- ^'UK Aerospace Maintenance, Repair, Overhaul & Logistics Industry Analysis'(PDF). UK Government Department for Business, Innovation & Skills. p. 16. Retrieved 14 December 2017.
- ^Kinnison, Harry; Siddiqui, Tariq (2011). Aviation Maintenance Management (2 ed.). McGraw-Hill. p. 122. ISBN978-0-07-180502-5.
- ^'The A, C and D of aircraft maintenance'. Qantas.
- ^'Major maintenance due for A380s'. MRO Network. Retrieved 14 December 2017.
- ^ ab'Aircraft maintenance at Lufthansa Technik'. Lufthansa Technik. Retrieved 14 December 2017.
- ^'Glossary of aircraft maintenance terms and abbreviations'. Monarch Engineering. Retrieved 14 December 2017.
- ^'Overhaul'. Lufthansa Technik. Retrieved 14 December 2017.
- ^Fabozzi, Frank, ed. (2000). Investing in asset-backed securities. New Hope, PA: Frank J. Fabozzi Associates. p. 156. ISBN1883249805. Retrieved 14 December 2017.
- ^'The Relationship between an Aircraft's Value and its Maintenance Status'(PDF). Aircraft Monitor. Retrieved 14 December 2017.
- ^Scheinberg, Ronald (2017). The Commercial Aircraft Finance Handbook. Routledge. ISBN1351364219. Retrieved 5 August 2018.
- ^'Maintenance Reserves Need to Account for Realistic D Check Costs'. Aircraft Value News. October 29, 2018.
- ^Bernie Baldwin (Sep 7, 2018). 'Profitability Is Aim Of Crossover Jets' Better Maintainability'. Aviation Week & Space Technology.
- ^Michael Gubisch (14 July 2017). 'How has the CSeries performed in service?'. Flightglobal.
- ^'Extension lead'. MRO management. March 2017.
- ^'ATR extends Type 'A' Maintenance Visit Intervals' (Press release). ATR. 25 February 2019.
- ^'CRJ Series Certified for Higher Maintenance Intervals' (Press release). Bombardier. September 24, 2018.
- ^'Singapore: Bombardier to take Q400 up to 90 seats'. flightglobal. 17 February 2016.
- ^Fred George (Mar 25, 2019). 'Bombardier Global 7500: A Personal Flying Flagship Without Equal'. Business & Commercial Aviation.
- ^'Company presentation & improvements'. Turkish Technic. November 2013.
- ^'747‑8 Offers Operational Improvements and Cross-Model Commonality'(PDF). AERO Quarterly. Boeing. Oct 2010.
External links[edit]
Wikimedia Commons has media related to Aircraft maintenance. |
- Alex Derber (Aug 29, 2018). 'How The A320 Overtook The 737, And MRO Implications'. Aviation Week Network.
The godfather 2 registration code crack. Aircraft maintenance checks are periodic inspections that have to be done on all commercial and civil aircraft after a certain amount of time or usage; military aircraft normally follow specific maintenance programmes which may or may not be similar to those of commercial and civil operators.[citation needed]
- 1Commercial aviation
- 1.2ABC check system
Commercial aviation[edit]
Airlines and other commercial operators of large or turbine-powered aircraft follow a continuous inspection program approved by the Federal Aviation Administration (FAA) in the United States,[1] or by other airworthiness authorities such as the Transport Canada Civil Aviation Directorate (TCCA) or the European Aviation Safety Agency (EASA). Each operator prepares a Continuous Airworthiness Maintenance Program (CAMP) under its Operations Specifications or 'OpSpecs'.[2]The CAMP includes both routine and detailed inspections.
FAA Maintenance Review Board[edit]
In the United States the FAA directs that initial aircraft maintenance requirements be generated for each aircraft type in a Maintenance Review Board Report (MRBR)[3] based on the analysis performed as outlined in ATA 'MSG-3 Operator/ManufacturerScheduled Maintenance Development' document (MSG-3 is for Maintenance Steering Group – 3rd Task Force). A history of this form of guidance can be found in Chapter 2 of the mentioned above AC 121-22C[3]. The MRBR is an approved set of an aircraft initial maintenance requirements as prescribed by the Appendix H to para. 25.1529 of the 14 CFR part 25. Modern aircraft with MSG-3-derived maintenance programs employ usage parameters (such as flight hours, calendar time, or flight cycles) for each required maintenance task included in the MRBR, which allow for more flexible scheduling of maintenance tasks accomplishment to minimize aircraft downtime.
ABC check system[edit]
Airlines and airworthiness authorities casually refer to the detailed inspections as 'checks', commonly one of the following: A check, B check, C check, or D check. A and B checks are lighter checks, while C and D are considered heavier checks. Aircraft operators may perform some work at their own facilities but often checks, and especially the heavier checks, take place at maintenance, repair and overhaul (MRO) company sites.[4]
A check[edit]
This is performed approximately every 400-600 flight hours or 200–300 flights, depending on aircraft type.[5] It needs about 50-70 man-hours and usually performs in a hangar for a minimum of 10 hours. The actual occurrence of this check varies by aircraft type, the cycle count, or the number of hours flown since the last check. The occurrence can be delayed by the airline if certain predetermined conditions are met.
B check[edit]
This is performed approximately every 6-8 months. It needs about 160-180 man-hours, depending on the aircraft, and is usually completed within 1–3 days at an airport hangar. A similar occurrence schedule applies to the B check as to the A check. However, B checks are increasingly incorporated into successive A checks, i.e.: Checks A-1 through A-10 complete all the B check items.[6]
C check[edit]
This is performed approximately every 20–24 months or a specific number of actual flight hours (FH) or as defined by the manufacturer. This maintenance check is much more extensive than a B check, requiring a large majority of the aircraft's components to be inspected. This check puts the aircraft out of service, and the aircraft must not leave the maintenance site until it is completed. It also requires more space than A and B checks. It is, therefore, usually carried out in a hangar at a maintenance base. The time needed to complete such a check is at least 1–2 weeks and the effort involved can require up to 6,000 man-hours.
3C check[edit]
Some authorities use a type of check, known as a 3C check or Intermediate Layover (IL), which typically includes light structural maintenance, including checks for corrosion, or on specific high-load parts of the airframe.[7] It may also be used as the opportunity for cabin upgrades (for example, new seats, entertainment systems, carpeting) which would otherwise put the aircraft out of service for a significant time without the need for an inspection. As component reliability has improved, some MROs now spread the workload across several C checks, or incorporate this 3C check into D checks instead.[8]
D check[edit]
The D check, sometimes known as a 'heavy maintenance visit' (HMV)[9] is by far the most comprehensive and demanding check for an airplane. This check occurs approximately every 6-10 years.[8] It is a check that more or less takes the entire airplane apart for inspection and overhaul. Even the paint may need to be completely removed for further inspection on the fuselage metal skin. Such a check can generally take up to 50,000 man-hours and 2 months to complete, depending on the aircraft and the number of technicians involved.[10] It also requires the most space of all maintenance checks, and as such must be performed at a suitable maintenance base. The requirements and the tremendous effort involved in this maintenance check make it by far the most expensive, with total costs for a single D check in the million-dollar range.[11]
Because of the nature and the cost of such a check, most airlines — especially those with a large fleet — have to plan D checks for their aircraft years in advance. Often, older aircraft being phased out of a particular airline's fleet are either stored or scrapped upon reaching their next D check, due to the high costs involved in comparison to the aircraft's value.[12] On average, a commercial aircraft undergoes two or three D checks before being retired.[13]
Manufacturers often underestimate the cost of the HMV/D-check: for a B777-200ER, Boeing estimates a $2.5 million cost but it can surpass $4 million, on a B777-300ER, the anticipated $2.7 million can rise to $4.5 million, from $4 million to $6 million for a B747-400 and from $650,000 to more than $1 million for a B737-800, while the $1.5 million projection for the B787-9 is likely to be surpassed.[14]
Comparison[edit]
Model | A Check | C Check | D Check |
---|---|---|---|
Airbus A220[16] | 850 | 8,500 | |
Airbus A320 family[17] | 750 (or 750 cycles or 4 months) | 7,500 (or 5,000 cycles or 24 months) | 6/12 years |
ATR 42/ATR 72[18] | 750 | 5,000 | 2/4/8 Years |
Bombardier CRJ700 series[19] | 800 | 8,000 | |
Bombardier Dash 8[20] | 800 | 8,000 | |
Bombardier Global 7500[21] | 850/36 months | 8,500 cycles / 12 years | |
Embraer E-Jet family | 850 | 8,500 | |
Embraer E-Jet E2 family | 1,000 | 10,000 | |
Mitsubishi Regional Jet | 750 | 7,500 | |
Boeing 737 NG[22] | 150/600 | 7,500 (or 730 days) | |
Boeing 747-400/747-8[23] | 600/1,000 | 7,500/10,000 | 8-8-6 years/6 years |
References[edit]
- ^AFS-600 (2008). 'Chapter 8. Inspection Fundamentals'. Aviation Maintenance Technician Handbook(pdf). Federal Aviation Administration. pp. 8–15. FAA-H-8083-30. Archived from the original(PDF) on 2014-11-22. Retrieved 2014-12-01.
- ^AFS (2009). 'Vol. 3 Chapters 18 & 43'. Flight Standards Information Management System. CHG 80. Federal Aviation Administration. Order 8900.1. Retrieved 2010-01-12.
- ^ abMaintenance Review Boards, Maintenance Type Boards, and OEM/TCH Recommended Maintenance Procedures(pdf). Federal Aviation Administration. 2012. Advisory Circular 121-22C. Retrieved 2019-05-16.
- ^'UK Aerospace Maintenance, Repair, Overhaul & Logistics Industry Analysis'(PDF). UK Government Department for Business, Innovation & Skills. p. 16. Retrieved 14 December 2017.
- ^Kinnison, Harry; Siddiqui, Tariq (2011). Aviation Maintenance Management (2 ed.). McGraw-Hill. p. 122. ISBN978-0-07-180502-5.
- ^'The A, C and D of aircraft maintenance'. Qantas.
- ^'Major maintenance due for A380s'. MRO Network. Retrieved 14 December 2017.
- ^ ab'Aircraft maintenance at Lufthansa Technik'. Lufthansa Technik. Retrieved 14 December 2017.
- ^'Glossary of aircraft maintenance terms and abbreviations'. Monarch Engineering. Retrieved 14 December 2017.
- ^'Overhaul'. Lufthansa Technik. Retrieved 14 December 2017.
- ^Fabozzi, Frank, ed. (2000). Investing in asset-backed securities. New Hope, PA: Frank J. Fabozzi Associates. p. 156. ISBN1883249805. Retrieved 14 December 2017.
- ^'The Relationship between an Aircraft's Value and its Maintenance Status'(PDF). Aircraft Monitor. Retrieved 14 December 2017.
- ^Scheinberg, Ronald (2017). The Commercial Aircraft Finance Handbook. Routledge. ISBN1351364219. Retrieved 5 August 2018.
- ^'Maintenance Reserves Need to Account for Realistic D Check Costs'. Aircraft Value News. October 29, 2018.
- ^Bernie Baldwin (Sep 7, 2018). 'Profitability Is Aim Of Crossover Jets' Better Maintainability'. Aviation Week & Space Technology.
- ^Michael Gubisch (14 July 2017). 'How has the CSeries performed in service?'. Flightglobal.
- ^'Extension lead'. MRO management. March 2017.
- ^'ATR extends Type 'A' Maintenance Visit Intervals' (Press release). ATR. 25 February 2019.
- ^'CRJ Series Certified for Higher Maintenance Intervals' (Press release). Bombardier. September 24, 2018.
- ^'Singapore: Bombardier to take Q400 up to 90 seats'. flightglobal. 17 February 2016.
- ^Fred George (Mar 25, 2019). 'Bombardier Global 7500: A Personal Flying Flagship Without Equal'. Business & Commercial Aviation.
- ^'Company presentation & improvements'. Turkish Technic. November 2013.
- ^'747‑8 Offers Operational Improvements and Cross-Model Commonality'(PDF). AERO Quarterly. Boeing. Oct 2010.
External links[edit]
Wikimedia Commons has media related to Aircraft maintenance. |
Approved Aircraft Inspection Program Sample
- Alex Derber (Aug 29, 2018). 'How The A320 Overtook The 737, And MRO Implications'. Aviation Week Network.